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Abstract

This paper examines the role of continuity of the basis in thecomputation of turbulent
flows. We compare standard finite elements and NURBS (non-uniform rational B-splines)
discretizations that are employed in Isogeometric Analysis [23]. We make use of quadratic
discretizations that areC0-continuous across element boundaries in standard finite ele-
ments, andC1-continuous in the case of NURBS. The variational multiscale residual-based
method [2, 4, 12, 22, 38] is employed as a turbulence modelingtechnique. We find thatC1-
continuous discretizations outperform theirC0-continuous counterparts on a per-degree-
of-freedom basis. We also find that the effect of continuity is greater for higher Reynolds
number flows.
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1 Introduction

Due to the complicated multiscale nature of turbulence, numerical simulation of
turbulent flows remains a significant computational challenge to this day. A com-
munity of researchers focused on understanding fundamental physicalbehavior of
turbulence through numerical simulation typically makes use of very simple ge-
ometries and high-order spectral or compact finite difference methods (see, e.g.,
[32, 34]). The underlying function spaces utilized in spectral methods are of high
continuity (C∞ in the cases of Fourier series and global polynomials). On the other
hand, turbulent flows are also of great interest in general geometry industrial ap-
plications. These are typically computed using finite volume and finite element
methods, which employ low-order approximation functions that are at mostC0-
continuous.

Recently, Hugheset al.[23] introduced a new computational technique termed Iso-
geometric Analysis in an attempt to generalize and improve on the finite element
method in the areas of geometry and solution representation, as well as mesh re-
finement. Isogeometric analysis is based on the geometric primitives of computer
graphics and computer-aided design systems. The first instantiation of isogeomet-
ric analysis made use of NURBS (non-uniform rational B-splines, see [16, 36, 37]).
NURBS-based isogeometric analysis was successfully applied to solve problems
of vascular fluid-structure interaction in [5]. Accuracy ofthe new methodology for
structural vibrations was shown to be superior to that of standard finite elements in
[17]. A mathematical theory of NURBS-based isogeometric analysis was put forth
in [3]. A distinguishing feature of isogeometric analysis is so-calledk-refinement,
in which the order of the functions is increased together with their continuity. As
a result, isogeometric analysis allows for higher-order and higher-continuity dis-
cretizations on complex geometries,5 and may be thought of as bridging the gap
existing between the procedures employed in the flow-physics and industrial-flow
communities.

A variational multiscale, residual-based turbulence modeling framework has re-
cently emerged as a new concept in large-eddy simulation (LES) of turbulent flows
(see [2, 4, 12, 22, 38]). In this methodology one obtains anexact equation for
the coarse, or resolved, scales and their explicit dependence on the fine, or unre-
solved, scales, and the modeling task amounts to accuratelyrepresenting the fine
scales in the coarse-scale equations. In this paper, inspired by the theory of sta-
bilized methods, we employ simple algebraic models for the fine scales, which
involve appropriately-scaled residuals of the underlyingpartial differential equa-

5 It is important to note that the highest possible order of continuity of the solution space
in a NURBS-based isogeometric analysis is limited to the continuity of the basis used
in the definition of the geometrical domain of interest. Purek-refinement with maximal
smoothness is only attainable in simple geometries
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tions. For a summary of the early literature on stabilized methods see Brooks and
Hughes [10]. Recent work on stabilized methods is presentedin [1, 8, 9, 11, 15, 18–
21, 28, 33, 41].

Spectral studies of simple advective and diffusive model problems in [4] indicated
better accuracy for theC1-continuous case, especially in the upper part of the spec-
trum. NURBS-based isogeometric analysis, in conjunction with the multiscale ap-
proach, was applied to turbulent flow computations in [2]. Preliminary results in-
dicated better accuracy for higher-order and higher-continuity discretizations. It
was noted in [2] that when going from aC0-continuous linear to aC1-continuous
quadratic B-spline basis an increase in solution accuracy was obtained. The ques-
tion this raises is whether it was the orderor continuity of the basis functions that
led to superior accuracy. It is the primary goal of this paperto answer this question.
It should be noted that good accuracy of B-spline discretizations for wall-bounded
turbulent flows was also noted in [29–31, 40].

The variational multiscale formulation employed in this study utilized the “advec-
tive form” of the convection term rather than the integratedby parts “conservative
form”. The advective form is often employed in finite elementflow codes, perhaps
more so than the conservative form. In earlier works on residual-based approaches
[2, 4, 12, 22], the conservative form was employed.

The paper is organized as follows. In Section 2, we state the weak formulation of
the incompressible Navier-Stokes (INS) equations at the continuous level. In Sec-
tion 3, we give the semi-discrete, residual-based variational multiscale formulation
of INS in advective form. In Section 4, we present numerical results for equilib-
rium turbulent channel flows at friction-velocity Reynoldsnumbers180 and590.
We compareC0- andC1-continuous quadratic elements and assess accuracy on the
basis of the number of degrees-of-freedom. High-fidelity, direct numerical simula-
tion (DNS) results of [35] are used as reference solutions. In Section 5, we draw
conclusions.

2 Incompressible Navier-Stokes Equations

We begin by considering a weak formulation of the incompressible Navier-Stokes
equations. LetV denote the trial solution and weighting function spaces, which are
assumed to be the same. We also assumeu = 0 on Γ and

∫

Ω
p(t) dΩ = 0 for all

t ∈ ]0, T [. The variational formulation is stated as follows: FindU = {u, p} ∈ V
such that∀W = {w, q} ∈ V,

B(W , U) = (W , F ) (1)
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where

B(W , U) =

(

w,
∂u

∂t

)

Ω

− (∇w, u ⊗ u)
Ω

+ (q,∇ · u)
Ω

− (∇ · w, p)
Ω

+ (∇sw, 2ν∇su)
Ω

, (2)

(W , F ) = (w, f )Ω, (3)

and

∇su =
1

2
(∇u + ∇uT ). (4)

f is the body force (per unit volume) andν is the kinematic viscosity.

Variational equations (1)-(3) imply weak satisfaction of the linear momentum equa-
tions and incompressibility constraint, namely

∂u

∂t
+ ∇ · (u ⊗ u) + ∇p −∇ · (2ν∇su) − f = 0 in Ω, (5)

∇ · u = 0 in Ω. (6)

Note that one may use the incompressibility constraint to simplify the momentum
equation as

∂u

∂t
+ u · ∇u + ∇p − ν∆u − f = 0 in Ω. (7)

3 Multiscale Residual-based Formulation of INS Employing the Advective
Form

We consider a direct-sum decomposition ofV into “coarse-scale” and “fine-scale”
subspaces,Vh andV ′, respectively,

V = Vh ⊕ V ′ (8)

Vh is assumed to be a finite-dimensional space, which will be identified later with
the space of functions with which we actually compute. One obtains a unique
decomposition in (8) with the aid of a linear projection operator P, that gives
Uh = PU ∈ Vh andU ′ = (I − P)U ∈ V ′ from a givenU ∈ V (see [25]
for details).

By restricting the weighting space toVh in (1) and employing the direct-sum de-
composition (8) for the solution space, we obtain the equation system for the large
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scales, namely: FindUh = {uh, ph} ∈ Vh such that∀W h = {wh, qh} ∈ Vh,

B(W h, Uh + U ′) = (W h, F ). (9)

(9) indicates precisely the manner in which the large scalesdepend onU ′ =
{u′, p′}.

Combining (2) and (9), we obtain: FindUh ∈ Vh, such that∀W h ∈ Vh,

(

wh,
∂uh

∂t

)

Ω

−
(

∇wh, uh ⊗ uh
)

Ω
+
(

qh,∇ · uh
)

Ω

−
(

∇ · wh, ph
)

Ω
+
(

∇swh, 2ν∇suh
)

Ω
−
(

wh, f
)

Ω

+

(

wh,
∂u′

∂t

)

Ω

−
(

∇wh, uh ⊗ u′

)

Ω
−
(

∇wh, u′ ⊗ uh
)

Ω

−
(

∇wh, u′ ⊗ u′

)

Ω
+
(

qh,∇ · u′

)

Ω

−
(

∇ · wh, p′
)

Ω
+
(

∇swh, 2ν∇su′

)

Ω
= 0 (10)

For purposes of modeling the fine scales we make the simplifying assumption
(

wh, ∂u′

∂t

)

Ω
= 0. We note, however, that it has been shown in [14] that it is benefi-

cial to incorporate this effect in modeling the fine scales. The term
(

∇swh, 2∇su′

)

Ω

may be omitted by selecting a projector that enforces the orthogonality of the coarse
and fine scales in the semi-norm induced by this term (see, e.g., [2]).

We turn our attention to the convective terms in (10). Assuming incompressibility
of the velocity field, namely,∇ · (uh + u′) = 0, we compute:

−
(

∇wh, uh ⊗ uh
)

Ω
−
(

∇wh, uh ⊗ u′

)

Ω

−
(

∇wh, u′ ⊗ uh
)

Ω
−
(

∇wh, u′ ⊗ u′

)

Ω

= −
(

∇wh, uh ⊗ (uh + u′)
)

Ω

−
(

∇wh, u′ ⊗ uh
)

Ω
−
(

∇wh, u′ ⊗ u′

)

Ω

=
(

wh, (uh + u′) · ∇uh
)

Ω

−
(

∇wh, u′ ⊗ uh
)

Ω
−
(

∇wh, u′ ⊗ u′

)

Ω
(11)

At this point we assume thatΩ is partitioned into a set of subdomains, such as finite
elements or NURBS elements, and on this partition we have a finite dimensional
space of functions with local support that forms our approximation space forUh

andW h. Let x = {xi}
d
i=1, denote the coordinates of elementK in physical space,

and letξ = {ξi}
d
i=1

, denote the coordinates of elementK̂ in parametric space. Let
x = x(ξ) : K̂ → K be a continuously differentiable map with a continuously
differentiable inverse.
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We model the fine scales as in [4]:

U ′ ≈ −τR(Uh), (12)

whereτ is a4×4 matrix (in three spatial dimensions) andR(Uh) is a4×1 vector
that collects momentum and continuity residuals of the Navier-Stokes equations,

R(Uh) = {rT
M(uh, ph), rC(uh)}T , (13)

in which

rM(uh, ph) =
∂uh

∂t
+ uh · ∇uh + ∇ph − ν∆uh − f , (14)

rC(uh) = ∇ · uh (15)

We defineτ as follows:

τ = diag(τM , τM , τM , τC), (16)

where

τM = (
4

∆t2
+ uh · Guh + CIν

2G : G)−1/2, (17)

τC = (g · τMg)−1, (18)

with G a second rank metric tensor

G =
∂ξ

∂x

T ∂ξ

∂x
, (19)

andg a vector obtained from the column sums of∂ξ
∂x ,

g = {gi}

gi =
d
∑

j=1

(
∂ξ

∂x
)ji. (20)

The definition ofτM in (17) is inspired by the theory of stabilized methods for
advection-diffusion-reaction systems (see, e.g., Shakib, Hughes and Johan [39],
Hughes and Mallet [24]). The definition ofτC comes from the small-scale Shur
complement operator for the pressure (see [2] for a details).

Combining equations (10)-(12), we obtain our discrete formulation: FindUh ∈ Vh,
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such that∀W h ∈ Vh,
(

wh,
∂uh

∂t

)

Ω

+
(

wh, (uh − τMrM) · ∇uh
)

Ω
+
(

qh,∇ · uh
)

Ω

−
(

∇ · wh, ph
)

Ω
+
(

∇swh, 2ν∇suh
)

Ω
−
(

wh, f
)

Ω

+
(

uh · ∇wh + ∇qh, τMrM

)

Ω
+
(

∇ · wh, τC∇ · uh
)

Ω

−
(

∇wh, τMrM ⊗ τMrM

)

Ω
= 0. (21)

4 Numerical experiments for turbulent channel flow

4.1 Problem setup

To examine the effects of continuity, we compute turbulent channel flows at Reynolds
numbersReτ = 180 andReτ = 590, based on the friction velocity and the channel
half width. To assess the accuracy of the calculations, we compare with the DNS
of [35].

The problem setup is as follows. The computational domain isa rectangular box,
and the flow is driven by a constant pressure gradient in the stream-wise direction.
Periodic boundary conditions are imposed in the stream-wise and span-wise direc-
tions, commonly referred to as homogeneous directions. A no-slip boundary con-
dition is applied at the walls. The no-slip boundary condition is enforced strongly,
that is, the discrete velocity is set to zero at the walls. An alternative approach is to
enforce Dirichlet boundary conditions weakly. This is accomplished by appropri-
ately augmenting the semi-discrete equations (21) by termsthat enforce the no-slip
condition weakly (see [6, 7] for details). Although the latter approach was shown
to be superior to the former, we did not employ it in the computations presented
herein.

We employ quadratic finite elements that areC0-continuous, and quadratic NURBS
elements that areC1-continuous across element interfaces. The basis functions uti-
lized in our computations are shown in Figure 1.

The semi-discrete equations (21) are advanced in time usingthe generalized-α
method [13, 26]. We use meshes that are stretched in the wall-normal direction
according to a hyperbolic function to cluster points near the wall. Moreover, in the
definition of τM (17) we setCI , a positive constant that derives from an element-
wise inverse estimate (see, e.g., [27]), to 36.

Numerical results for all cases are reported in the form of statistics of the mean
velocity and root-mean-square velocity fluctuations. The statistics were computed
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 1

 0  1  2  3  4  5  6

(a)C0-continuous quadratic elements

 0
 0  1  2  3  4  5  6

(b) C1-continuous quadratic NURBS

Fig. 1. Basis functions employed in homogeneous directions. Basis functions are shown
in a univariate setting. Three-dimensional basis functions are obtained by taking tensor
products of one-dimensional basis functions. The meshes are stretched in the wall-normal
direction.

by sampling the velocity field at the mesh knots and averagingthe solution in time
as well as in the homogeneous directions. The meshes were chosen such that the
number of degrees of freedom for both quadratic discretizations are approximately
the same. All computational results are presented in non-dimensional wall units.

4.2 Turbulent channel flow atReτ = 180

The domain size is2π, 2, and4/3π in the stream-wise, wall-normal, and span-wise
directions, respectively. The corresponding DNS computation was carried out on a
domain of the same size with128×129×128 spectral functions in the stream-wise,
wall-normal and span-wise direction, respectively.
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(a) Mean stream-wise velocity
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(b) Stream-wise velocity fluctuations

Fig. 2. Turbulent channel flow atReτ = 180 computed on a323 element mesh. Comparison
of C0- versusC1-continuous discretizations.

We carried out computations employingC0- and C1-continuous quadratic dis-
cretizations keeping the number of degrees of freedom nearly the same in both
cases. For theC0 case we used a mesh of163 elements, which gave32 × 33 × 32
basis functions in our discrete space, whereas for theC1 case we employed a mesh
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(a) Wall-normal velocity fluctuations
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w
+
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(b) Span-wise velocity fluctuations

Fig. 3. Turbulent channel flow atReτ = 180 computed on a323 element mesh. Comparison
of C0- versusC1-continuous discretizations.

of 323 elements, which led to a discrete space comprised of32×34×32 basis func-
tions. (The open knot vector construction is responsible for the extra basis function
in the wall-normal direction; see Hughes, Cottrell and Bazilevs [23].)
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Figure 2 illustrates that the mean flow obtained with theC1-continuous discretiza-
tion is slightly more accurate. However, both discretizations show good agreement
with the DNS result. On the other hand, the fluctuations are significantly better in
the case ofC1 quadratics (see Figures 2-3).

4.3 Turbulent channel flow atReτ = 590

We also performed turbulent channel flow computations forReτ = 590 to examine
the effects of the continuity as the Reynolds number of the flow is increased. For
this simulation the domain size is2π, 2, andπ in the stream-wise, wall-normal and
span-wise directions, respectively. The corresponding DNS used the same domain
size with a resolution of384 × 257 × 384 spectral functions in the stream-wise,
wall-normal and span-wise directions.

As in theReτ = 180 case, we present results comparing quadratic discretizations
that areC0- andC1-continuous while keeping the number of degrees of freedom
nearly the same. Figures 4-5 show the results obtained usingaC0 mesh of32×33×
32 basis functions and aC1 mesh of32 × 34 × 32 basis functions. The difference
in the number of degrees of freedom is, as mentioned previously, attributable to the
open knot vector construction for the NURBS basis. These meshes are considered
coarse for this simulation, which is manifested by the fact that the mean stream-
wise velocity is over-predicted by both discretizations, theC1 discretization being
more accurate (see Figure 4). As in theReτ = 180 case, the velocity fluctuations
are significantly more accurate forC1 quadratic NURBS, as shown in Figures 4-5.

We performed the same comparison study onh-refined meshes, resulting in64 ×
65 × 64 functions for theC0 basis and64 × 66 × 64 functions for theC1 basis.
Results are presented in Figures 6-7. Both the mean flow and fluctuations are more
accurate in the case ofC1 NURBS, for which the mean steam-wise velocity is very
close to the DNS result. From the above results one may infer that solution accuracy
depends more critically on the continuity of the discretization for flows at higher
Reynolds number.

5 Conclusions

In this work, we presented a residual-based, variational multiscale model of turbu-
lence that is based on the advective form of the convection term, a popular choice
in finite element flow codes. We compared turbulent channel flow results usingC0-
andC1-continuous quadratic discretizations. Using aC1-continuous quadratic ba-
sis yields more accurate mean flow and fluctuating quantitiesthanC0-continuous
quadratic basis functions. We conclude that smooth NURBS basis functions have
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Fig. 4. Turbulent channel flow atReτ = 590 computed on a323 element mesh. Comparison
of C0- versusC1-continuous discretizations.

advantages overC0-continuous finite elements in turbulent flow calculations as an-
ticipated in [4].
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Fig. 5. Turbulent channel flow atReτ = 590 computed on a323 element mesh. Comparison
of C0- versusC1-continuous discretizations.
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[21] G. Hauke and L. Valĩno. Computing reactive flows with a field Monte Carlo
formulation and multi-scale methods.Computer Methods in Applied Mechan-
ics and Engineering, 193:1455–1470, 2004.

[22] T. J. R. Hughes, V. M. Calo, and G. Scovazzi. Variationaland multiscale
methods in turbulence. In W. Gutkowski and T.A. Kowalewski,editors,In
Proceedings of the XXI International Congress of Theoretical and Applied
Mechanics (IUTAM). Kluwer, 2004.

[23] T. J. R. Hughes, J. A. Cottrell, and Y. Bazilevs. Isogeometric analysis: CAD,
finite elements, NURBS, exact geometry, and mesh refinement.Computer
Methods in Applied Mechanics and Engineering, 194:4135–4195, 2005.

[24] T. J. R. Hughes and M. Mallet. A new finite element formulation for
fluid dynamics: III. The generalized streamline operator for multidimensional
advective-diffusive systems.Computer Methods in Applied Mechanics and
Engineering, 58:305–328, 1986.

[25] T. J. R. Hughes and G. Sangalli. Variational multiscaleanalysis: the fine-
scale Green’s function, projection, optimization, localization, and stabilized
methods.SIAM Journal of Numerical Analysis, 2006. Accepted. Available as
ICES Report 05-46, UT Austin.

[26] K. E. Jansen, C. H. Whiting, and G. M. Hulbert. A generalized-α method
for integrating the filtered Navier-Stokes equations with astabilized finite el-
ement method.Computer Methods in Applied Mechanics and Engineering,
190:305–319, 1999.

[27] C. Johnson.Numerical solution of partial differential equations by the finite

17



element method. Cambridge University Press, Sweden, 1987.
[28] B. Koobus and C. Farhat. A variational multiscale method for the large eddy

simulation of compressible turbulent flows on unstructuredmeshes – applica-
tion to vortex shedding.Computer Methods in Applied Mechanics and Engi-
neering, 193:1367–1383, 2004.

[29] A. G. Kravchenko, P. Moin, and R. Moser. Zonal embedded grids for numer-
ical simulation of wall-bounded turbulent flows.Journal of Computational
Physics, 127:412–423, 1996.

[30] A. G. Kravchenko, P. Moin, and K. Shariff. B-spline method and zonal grids
for simulation of complex turbulent flows.Journal of Computational Physics,
151:757–789, 1999.

[31] W. Y. Kwok, R. D. Moser, and J. Jiménez. A critical evaluation of the resolu-
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